Reducing Bus Route Redundancy By: Jin, John, and Hunter

Main Goal of Project

We wanted to reduce redundancy between the existing bus routes and BRT routes.

To do this we identified 8 routes, and a number of stops that may be candidates for elimination.

The funds spent on these routes may be better used for other resources.

We define redundant to be distance from existing stop to BRT stop <= 0.5 Km.

How we identified our redundancy (Methodology)

- Mapped individual existing bus stop distance to closest BRT location
 - Point comparison using Point object distance method
- If an existing stop was within a 5-7 minute walk from the nearest BRT stop, it was identified as redundant
 - 5-7 minute walk estimated as 0.5 Km, or about 500 meters away
 - We calculated the distances of all bus stops to the nearest brt stop and then group each stop by route.

How we Identified the Redundant Routes

In the previous slide, we can see we have routes 1, 4, 5, 27, 28, 44, 48, and 67 which have a disproportionate number of stops close to a BRT stop.

100% of stops along this line were redundant with BRT stops.

Meaning that 100% of stops are either along the BRT line or are less than .5 Km from a BRT stop.

The following table contains the summary statistics of distances from existingstops to BRT stops along the 1 route.count29.000000

The values in the table are in Km.

count	29.000000
mean	0.179172
std	0.125514
min	0.005439
25%	0.108280
50%	0.173806
75%	0.251085
max	0.492230
Name:	distance_to_br

82% of the stops along route 4 are redundant.

count	111.000000
mean	0.274405
std	0.179404
min	0.005685
25%	0.130146
50%	0.246896
75%	0.373465
max	0.693609
Name:	distance_to_brt

84% of stops are redundant.

count	89.00000
mean	0.329965
std	0.293554
min	0.002962
25%	0.125596
50%	0.303264
75%	0.429597
max	1.607489
Name:	distance_to_brt

96% of stops are redundant.

count	77.000000
mean	0.229680
std	0.151089
min	0.001928
25%	0.109778
50%	0.216637
75%	0.337102
max	0.556839
Name:	distance_to_brt

87% of routes are redundant.

count	86.00000
mean	0.278038
std	0.183415
min	0.000704
25%	0.131553
50%	0.269617
75%	0.422397
max	0.667881
Name:	distance_to_brt

89% of routes are redundant.

count	59.000000
mean	0.263933
std	0.157645
min	0.005707
25%	0.121640
50%	0.264354
75%	0.368011
max	0.593601
Name:	distance_to_brt

95% of routes are redundant.

count	24.000000
mean	0.204634
std	0.144732
min	0.005439
25%	0.116809
50%	0.201166
75%	0.264903
max	0.502822
Name:	distance_to_brt

100% of stops on this route are redundant.

count	27.000000
mean	0.209379
std	0.164134
min	0.003276
25%	0.012247
50%	0.248623
75%	0.351522
max	0.449064
Name:	distance_to_brt,

Total Effect of Redundant Bus Stops

- Redundant bus stops had on average 16.8% more boardings per stop compared to stops not covered by BRT
- Total ridership on existing redundancies: 13,343 daily boardings
- Estimated annual total cost of maintaining redundancies: \$1,597,500
 - 639 bus stops costing an estimated annual \$2,500 each to maintain (Salt Lake City, City Council Archives)

Finding Inefficiencies

- Create a Deep For Search function for bus
- <u>Depth-first search</u> (DFS), is an algorithm for tree traversal on graph or tree data structures. It can be implemented easily using recursion and data structures like dictionaries and arrays.


```
{'1379 25260': [{'destination': '1717 25301',
  'travel time': 41,
  'trip id': 884545,
  'bus name': 2,
  'full bus name': '2 NORTH TFR PT'}],
'1717 25301': [{'destination': '1923 26296',
  'travel time': 995,
  'trip id': 884531,
  'bus name': 2,
  'full bus name': '2 NORTH TFR PT'},
 {'destination': '1923 25352',
  'travel time': 51,
  'trip id': 884545,
  'bus name': 2,
  'full bus name': '2 NORTH TFR PT'},
```

```
Created a graph of the current nodes next possible node
```

Times set between 7 – 9 am when people are going to work.

Made to avoid 'drop off only' buses

Travel time for an hour

-

Starting at stop 1787 covered the highest ratio of covered stops/all stops with 0.799

٠.

• Most of the other starting stops with higher ratio near the campus

• Reduced travel time to 30 minutes

-

- In the US, Average commute time for people is 26.6 min.
- Stop 741 had the highest stop coverage ratio with 0.226

٠.

• The top encountered stop ID for the 30-minute travel

How to go forward...

- Future work
 - Use distance covered instead of stops covered as measurement
 - Compare how the BRT would change the graph output

